https://nova.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Arsenic and other elemental concentrations in mushrooms from Bangladesh: health risks https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:32335 Thu 14 Apr 2022 11:05:50 AEST ]]> Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:30283 Sat 24 Mar 2018 07:33:33 AEDT ]]> Pore-water chemistry explains zinc phytotoxicity in soil https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:26437 Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn2+) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2µM for Znpw and Zn2+, respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn2+ in pore-water. The EC10 (total loading) values ranged from 179 to 5214mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC.]]> Sat 24 Mar 2018 07:27:29 AEDT ]]> Health risks from trace elements in muscles of some commonly available fish in Australia and India https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:40054 Fri 15 Jul 2022 10:02:32 AEST ]]>